
I2C Communication Description
Product: Digital Mass Flow Sensor (KPI-DMFS-1)

Inter-Integrated Circuit (or I2C) is a widely used data bus allowing multiple devices to share data over
short distances. In addition to a shared ground, only two primary lines are needed, a data line (SDA),
and a clock (SCL). One or multiple devices act as a Master to send both addresses and commands to
Slave devices, which respond according to the commands. The user will need to provide an external
device configured and programmed as a Master in order to communicate with the Digital Mass Flow
Sensor.

For every command, the slave address must be written as the first seven bits, with either a 0 or 1 as the
last bit, 0 being Write, 1 being Read. If it is an address plus the write bit, after receiving an acknowledge,
the Master must then write an 8-bit command. If the address plus the read bit is written, after receiving
an acknowledge, the slave will respond with data.

The KPI Flow Sensor responds to reads with 3 bytes (except the “Read Serial Command” – see page
titled “Serial Number” for more info), in the following order:

1. Most significant data byte
2. Least significant data byte
3. CRC byte

The basic sequence of commands for initializing the unit, for flow reading, is as follows:

1. Select Gas
a. Optionally, verify gas selection (I2C Read)

2. Select flow type (LBM, SLPM)
a. Optionally, verify flow type selection (I2C Read)
b. After gas and flow selection have been verified, if these settings are not expected to

ever change, you can optionally write the Save Settings command, and skip straight to
step 3 upon subsequent start-ups

3. Start flow conversion
4. Now able to continuously read flow through I2C Read commands (values must be converted

using divisor conversion chart)

If, instead of flow, temperature is wanted:

1. Select temperature
a. Optionally, verify temperature selection (I2C Read)
b. After temperature selection has been verified, if this setting is not expected to ever

change, you can optionally write the Save Settings command, and skip straight to
step 2 upon subsequent start-ups

2. Start conversion

3. Now able to continuously read temperature through I2C Read commands (values must be
converted using divisor conversion chart)

I2C Slave Address and Commands

Digital Mass Flow Sensor Slave Address
0x10 Hex

0b0010000 Binary

I2C Write and Read Commands, with Slave Address
0x20 I2C Write, Hex
0x21 I2C Read, Hex

Digital Mass Flow Sensor Slave Commands
Command Description

0x01 Select Flow – Standard Liters Per Minute (SLPM)
0x02 Select Flow – Pound Mass Per Minute (LBM)
0x03 Select Temperature – Celsius (C)
0x04 Select Gas – Air
0x05 Select Gas – Oxygen
0x06 Read Serial Number
0x11 Start Conversion
0x77 Save Settings

When writing commands 0x01 through 0x05, the Digital Mass Flow Sensor will respond with those same
commands upon receiving an I2C Read, in order that the user may confirm that the device received the
correct command, if the user so wishes.

Ex:

1. MASTER: 0x20 (I2C Write)
2. MASTER: 0x04 (Select Gas – Air)
3. MASTER: 0x21 (I2C Read)
4. SLAVE: 0x00 (First Data Byte)
5. SLAVE: 0x04 (Second Data byte)
6. SLAVE: 0xC4 (CRC BYTE)

Therefore, the two-byte data bytes would be 0x0004, or 0x04, the same as the written command for
Select Gas – Air.

Conversion Values

Each reading setting comes back as a 16-bit decimal value, and must be converted to its actual value
using a different divisor, as listed below.

Setting Divisor
SLPM 100.0
LBM 10000.0

Temperature 100.0

So, for example, if reading standard liters per minute, and the value comes back as decimal 15,784 –
after dividing by 100.0, this value becomes 157.84 (SLPM), which is the flow rate.

Example I2C Flow Reading Sequence:

1. MASTER: 0x20 (I2C Write Command)
2. MASTER: 0x04 (Select Gas – Air)
3. MASTER: 0x20 (I2C Write Command)
4. MASTER: 0x01 (Select Flow – Standard Liters Per Minutes)
5. MASTER: 0x20 (I2C Write Command)
6. MASTER: 0x11 (Start Conversion)
7. MASTER: 0x21 (I2C Read)
8. SLAVE: First byte (Ex: 0x3D, or 0b00111101)
9. SLAVE: Second byte (Ex: 0xA8, or 0b10101000)
10. SLAVE: CRC byte (Ex: 0xB7, or 0b10110111)
11. MASTER: Combine first and second bytes (0x3DA8, or 0b0011110110101000), to get the

decimal value (15,784) – calculate the CRC on this decimal value, and ensure that it matches the
received CRC byte (decimal 183) - then convert the decimal value using the chart and your
particular setting (15,784 / 100.0 = 157.84 SLPM)

Serial Number

Each flow sensor is serialized with a 10-digit number, therefore the “read serial number” command
(0x06) is the one command that returns more than three bytes. Instead, it returns nine bytes (6 data
bytes and 3 CRC bytes), in the following sequence:

B1, B2, CRC1, B3, B4, CRC2, B5, B6, CRC3

Where B1 is the most significant data byte, and B6 is the least significant byte, and each CRC
corresponds with the preceding two data bytes (CRC1 is the CRC value for 0xB1B2). The data bytes must
be combined in sequence to get the resulting decimal serial number value, e.g. 0xB1B2B3B4B5B6.

Example Serial Number return values:

0x00, 0x01, 0x31, 0x37, 0xD8, 0xA1, 0x8C, 0xD6, 0x35

In this scenario, 0x00, 0x01, 0x37, 0xD8, 0x8C, 0xD6 are the data bytes and 0x31, 0xA1, 0x35 are the
CRC bytes. If the CRC and data all match, we then combine the data bytes:

0x000137D88CD6

Which is the following decimal value:

5231906006

Which is the serial number of the unit.

Cyclic Redundancy Check (CRC)

A cyclic redundancy check is an error-detecting code used to expose data loss and accidental changes in
values during data transfer. A calculation is performed internally on the data that is to be sent out from
the device, and the remainder result is sent out alongside the data as the CRC code. The user can then
perform the same calculation and validate that their operation computes the same CRC as the one
received. If the CRC values match, we can say with high confidence that no data loss has occurred. If
the CRC values do not match, it can be assumed that some data loss occurred, and the data needs to be
re-transmitted.

CRC Calculation Example Code (Python)

def calculate_crc(i2cData):
POLYNOMIAL = 0x131 #P(x)=x^8+x^5+x^4+1 = 100110001
data = []
data.append((i2cData >> 8) & 0xFF)
data.append(i2cData & 0xFF)
crc = 0
#calculates 8-Bit checksum with given polynomial
for x in range(0,2):

 crc ^= (data[x]);
 for y in range(8,0,-1):
 if(crc & 0x80):
 crc = (crc << 1) ^ POLYNOMIAL
 else:
 crc = (crc << 1)

return crc;

Where i2cData is a 16-bit integer value.

Example inputs/returns:

 Input: 15784

 Return: 183

 Input: 4

 Return: 196

